Platypus Explained

For other uses see Platypus (disambiguation).

The Platypus (Ornithorhynchus anatinus) is a semi-aquatic mammal endemic to eastern Australia, including Tasmania. Together with the four species of echidna, it is one of the five extant species of monotremes, the only mammals that lay eggs instead of giving birth to live young. It is the sole living representative of its family (Ornithorhynchidae) and genus (Ornithorhynchus), though a number of related species have been found in the fossil record.

The bizarre appearance of this egg-laying, venomous, duck-billed, beaver-tailed, otter-footed mammal baffled European naturalists when they first encountered it, with some considering it an elaborate fraud. It is one of the few venomous mammals; the male Platypus has a spur on the hind foot that delivers a venom capable of causing severe pain to humans. The unique features of the Platypus make it an important subject in the study of evolutionary biology and a recognisable and iconic symbol of Australia; it has appeared as a mascot at national events and is featured on the reverse of the Australian 20 cent coin. The platypus is the animal emblem of the state of New South Wales.[1]

Until the early 20th century it was hunted for its fur, but it is now protected throughout its range. Although captive breeding programs have had only limited success and the Platypus is vulnerable to the effects of pollution, it is not under any immediate threat.

Taxonomy and etymology

When the Platypus was first discovered by Europeans in 1798, a pelt and sketch were sent back to the United Kingdom by Captain John Hunter, the second Governor of New South Wales.[2] The British scientists were at first convinced that the attributes must have been a hoax. George Shaw, who produced the first description of the animal in the Naturalist's Miscellany in 1799, stated that it was impossible not to entertain doubts as to its genuine nature, and Robert Knox believed it may have been produced by some Asian taxidermist.[3] It was thought that somebody had sewn a duck's beak onto the body of a beaver-like animal. Shaw even took a pair of scissors to the dried skin to check for stitches.

The common name, Platypus, is Latin derived from the Greek words πλατύς ("platys", flat, broad) and πους ("pous", foot), meaning "flat foot".[4] Shaw assigned it as a Linnaean genus name when he initially described it, but the term was quickly discovered to already belong to the wood-boring ambrosia beetle (genus Platypus).[5] It was independently described as Ornithorhynchus paradoxus by Johann Blumenbach in 1800 (from a specimen given to him by Sir Joseph Banks)[6] and following the rules of priority of nomenclature it was later officially recognised as Ornithorhynchus anatinus.[5] The scientific name Ornithorhynchus is derived from ορνιθόρυνχος ("ornithorhynkhos"), which literally means "bird snout" in Greek, and anatinus, which means "duck-like" in Latin.

There is no universally agreed upon plural of "platypus" in the English language. Scientists generally use "platypuses" or simply "platypus". Colloquially, "platypi" is also used for the plural, although this is pseudo-Latin; the Greek plural would be "platypodes". Early British settlers called it by many names, such as watermole, duckbill, and duckmole. The name "Platypus" is often prefixed with the adjective "duck-billed" to form Duck-billed Platypus, despite there being only one species of Platypus.[7]

Description

The body and the broad, flat tail of the Platypus are covered with dense brown fur that traps a layer of insulating air to keep the animal warm.[5] The Platypus uses its tail for storage of fat reserves (an adaptation also found in animals such as the Tasmanian Devil[8] and fat-tailed sheep). It has webbed feet and a large, rubbery snout; these are features that appear closer to those of a duck than to those of any known mammal. The webbing is more significant on the front feet and is folded back when walking on land.[5] Unlike a bird's beak (in which the upper and lower parts separate to reveal the mouth), the snout of the Platypus is a sensory organ with the mouth on the underside. The nostrils are located on the dorsal surface of the snout, while the eyes and ears are located in a groove set just back from it; this groove is closed when swimming.[5] Platypuses have been heard to emit a low growl when disturbed and a range of other vocalisations have been reported in captive specimens.

Weight varies considerably from 0.7to, with males being larger than females: males average 50cm (20inches) total length while females average 43cm (17inches).[5] There is substantial variation in average size from one region to another, and this pattern does not seem to follow any particular climatic rule and may be due to other environmental factors such as predation and human encroachment.[9]

The Platypus has an average body temperature of about 32°C rather than the 37°C typical of placental mammals.[10] Research suggests this has been a gradual adaptation to harsh environmental conditions on the part of the small number of surviving monotreme species rather than a historical characteristic of monotremes.[11] [12]

The modern Platypus young have three-cusped molars which they lose before or just after leaving the breeding burrow;[13] [14] adults have heavily keratinised pads in their place.[5] The Platypus jaw is constructed differently from that of other mammals, and the jaw-opening muscle is different.[5] As in all true mammals, the tiny bones that conduct sound in the middle ear are fully incorporated into the skull, rather than lying in the jaw as in cynodonts and other pre-mammalian synapsids. However, the external opening of the ear still lies at the base of the jaw.[5] The Platypus has extra bones in the shoulder girdle, including an interclavicle, which is not found in other mammals.[5] It has a reptilian gait, with legs that are on the sides of the body, rather than underneath.[5]

Venom

See main article: Platypus venom.

While both male and female Platypus are born with ankle spurs, only the male has spurs which produce a cocktail of venom,[15] [16] [17] composed largely of defensin-like proteins (DLPs), three of which are unique to the Platypus.[18] The defensin proteins are produced by the immune system of the platypus. Although powerful enough to kill smaller animals such as dogs, the venom is not lethal to humans, but is so excruciating that the victim may be incapacitated.[18] [19] Oedema rapidly develops around the wound and gradually spreads throughout the affected limb. Information obtained from case histories and anecdotal evidence indicates that the pain develops into a long-lasting hyperalgesia that persists for days or even months.[20] [21] Venom is produced in the crural glands of the male, which are kidney-shaped alveolar glands connected by a thin-walled duct to a calcaneus spur on each hind limb. The female Platypus, in common with echidnas, has rudimentary spur buds which do not develop (dropping off before the end of their first year) and lack functional crural glands.[5]

The venom appears to have a different function from those produced by non-mammalian species: its effects are not life-threatening but nevertheless powerful enough to seriously impair the victim. Since only males produce venom and production rises during the breeding season, it is theorised that it is used as an offensive weapon to assert dominance during this period.[18]

Electrolocation

Monotremes (see also echidna for the other species) are the only mammals known to have a sense of electroreception: they locate their prey in part by detecting electric fields generated by muscular contractions. The Platypus' electroreception is the most sensitive of any monotreme.[22]

The electroreceptors are located in rostro-caudal rows in the skin of the bill, while mechanoreceptors (which detect touch) are uniformly distributed across the bill. The electrosensory area of the cerebral cortex is contained within the tactile somatosensory area, and some cortical cells receive input from both electroreceptors and mechanoreceptors, suggesting a close association between the tactile and electric senses. Both electroreceptors and mechanoreceptors in the bill dominate the somatotopic map of the platypus brain, in the same way human hands dominate the Penfield homunculus map.[23] [24]

The Platypus can determine the direction of an electric source, perhaps by comparing differences in signal strength across the sheet of electroreceptors. This would explain the animal's characteristic side-to-side motion of its head while hunting. The cortical convergence of electrosensory and tactile inputs suggests a mechanism for determining the distance of prey items which, when they move, emit both electrical signals and mechanical pressure pulses, which would also allow for computation of distance from the difference in time of arrival of the two signals.[22]

The Platypus feeds by digging in the bottom of streams with its bill. The electroreceptors could be used to distinguish animate and inanimate objects in this situation (in which the mechanoreceptors would be continuously stimulated).[22] When disturbed, its prey would generate tiny electrical currents in their muscular contractions which the sensitive electroreceptors of the Platypus could detect. Experiments have shown that the Platypus will even react to an "artificial shrimp" if a small electrical current is passed through it.[25]

Ecology and behaviour

The Platypus is semi-aquatic, inhabiting small streams and rivers over an extensive range from the cold highlands of Tasmania and the Australian Alps to the tropical rainforests of coastal Queensland as far north as the base of the Cape York Peninsula.[26] Inland, its distribution is not well known: it is extinct in South Australia (barring an introduced population on Kangaroo Island)[27] and is no longer found in the main part of the Murray-Darling Basin, possibly due to the declining water quality brought about by extensive land clearing and irrigation schemes.[28] Along the coastal river systems, its distribution is unpredictable; it appears to be absent from some relatively healthy rivers, and yet maintains a presence in others that are quite degraded (the lower Maribyrnong, for example).[29]

In captivity, Platypuses have survived to seventeen years of age and wild specimens have been recaptured at eleven years old. Mortality rates for adults in the wild appear to be low.[5] Natural predators include snakes, water rats, goannas, hawks, owls and eagles. Low Platypus numbers in northern Australia are possibly due to predation by crocodiles.[30] The introduction of red foxes as a predator for rabbits may have had some impact on its numbers on the mainland.[9] The Platypus is generally regarded as nocturnal and crepuscular, but individuals are also active during the day, particularly when the sky is overcast.[31] [32] Its habitat bridges rivers and the riparian zone for both a food supply of prey species and banks where it can dig resting and nesting burrows.[32] It may have a range of up to 7km, with male's home ranges overlapping with those of 3 or 4 females.[33]

The Platypus is an excellent swimmer and spends much of its time in the water foraging for food. When swimming it can be distinguished from other Australian mammals by the absence of visible ears.[34] Uniquely among mammals it propels itself when swimming by alternate rowing motion with the front two feet; although all four feet of the Platypus are webbed, the hind feet (which are held against the body) do not assist in propulsion, but are used for steering in combination with the tail.[35] The species is endothermic, maintaining its body temperature about 32°C, lower than most mammals, even while foraging for hours in water below 5°C.[5]

Dives normally last around 30 seconds, but can last longer although few exceed the estimated aerobic limit of 40 seconds. 10 to 20 seconds are commonly spent in recovery at the surface.[36] [37] The Platypus is a carnivore: it feeds on annelid worms and insect larvae, freshwater shrimps, and yabbies (freshwater crayfish) that it digs out of the riverbed with its snout or catches while swimming. It utilises cheek-pouches to carry prey to the surface where they are eaten.[34] The Platypus needs to eat about 20% of its own weight each day. This requires the Platypus to spend an average of 12 hours each day looking for food.[36] When not in the water, the Platypus retires to a short, straight resting burrow of oval cross-section, nearly always in the riverbank not far above water level, and often hidden under a protective tangle of roots.[34]

Reproduction

When the Platypus was first discovered, scientists were divided over whether the female laid eggs. This was not confirmed until 1884 when W. H. Caldwell was sent to Australia where, after extensive searching assisted by a team of 150 Aborigines, he managed to discover a few eggs.[5] [18] Mindful of the high cost of wiring England based on the cost per word, Caldwell famously but tersely wired London, "Monotremes oviparous, ovum meroblastic". That is, monotremes lay eggs, and the eggs are similar to those of reptiles in that only part of the egg divides as it develops.

The species exhibits a single breeding season; mating occurs between June and October, with some local variation taking place in populations across the extent of its range.[30] Historical observation, mark and recapture studies, and preliminary investigations of population genetics indicate the possibility of resident and transient members of populations and suggest a polygynous mating system.[38] Females are thought likely to become sexually mature in their second year, with breeding confirmed to still take place in animals over nine years old.[38]

Outside the mating season, the Platypus lives in a simple ground burrow whose entrance is about 30cm (10inches) above the water level. After mating, the female constructs a deeper, more elaborate burrow up to 20m (70feet) long and blocked with plugs at intervals (which may act as a safeguard against rising waters or predators, or as a method of regulating humidity and temperature).[39] The male takes no part in caring for its young, and retreats to its yearlong burrow. The female softens the ground in the burrow with dead, folded, wet leaves and she fills the nest at the end of the tunnel with fallen leaves and reeds for bedding material. This material is dragged to the nest by tucking it underneath her curled tail.

The female Platypus has a pair of ovaries but only the left one is functional.[31] It lays one to three (usually two) small, leathery eggs (similar to those of reptiles), that are about 11mm in diameter and slightly rounder than bird eggs.[40] The eggs develop in utero for about 28 days with only about 10 days of external incubation (in contrast to a chicken egg, which spends about 1 day in tract and 21 days externally).[31] After laying her eggs, the female curls around them. The incubation period is separated into three parts. In the first, the embryo has no functional organs and relies on the yolk sac for sustenance. The yolk is absorbed by the developing young.[41] During the second, the digits develop, and in the last, the egg tooth appears.[42]

The newly hatched young are vulnerable, blind, and hairless, and are fed by the mother's milk. Although possessing mammary glands, the Platypus lacks teats. Instead, milk is released through pores in the skin. There are grooves on her abdomen that form pools of milk, allowing the young to lap it up.[30] After they hatch, the offspring are suckled for three to four months. During incubation and weaning, the mother initially only leaves the burrow for short periods to forage. When doing so, she creates a number of thin soil plugs along the length of burrow possibly to protect the young from predators; pushing past these on her return forces water from her fur and allows the burrow to remain dry.[43] After about five weeks, the mother begins to spend more time away from her young and at around four months the young emerge from the burrow.[30] A platypus is born with teeth, but these drop out at a very early age, leaving the horny plates they grind their food with.[44]

Evolution

The Platypus and other monotremes were very poorly understood and some of the 19th century myths that grew up around them—for example, that the monotremes were "inferior" or quasi-reptilian—still endure.[45] In 1947, William King Gregory theorised that placental mammals and marsupials may have diverged earlier and a subsequent branching divided the monotremes and marsupials, but later research and fossil discoveries have suggested this is incorrect.[45] [46] In fact, modern monotremes are the survivors of an early branching of the mammal tree, and a later branching is thought to have led to the marsupial and placental groups.[47] [45]

The oldest discovered fossil of the modern Platypus dates back to about 100,000 years ago, during the Quaternary period. The extinct monotremes (Teinolophos and Steropodon) were closely related to the modern Platypus.[46] The fossilised Steropodon was discovered in New South Wales and is composed of an opalised lower jawbone with three molar teeth (whereas the adult contemporary Platypus is toothless). The molar teeth were initially thought to be tribosphenic, which would have supported a variation of Gregory's theory, but later research has suggested that, while they have three cusps, they evolved under a separate process.[13] The fossil is thought to be about 110 million years old, which means that the Platypus-like animal was alive during the Cretaceous period, making it the oldest mammal fossil found in Australia. Monotrematum sudamericanum, another fossil relative of the Platypus, has been found in Argentina, indicating that monotremes were present in the supercontinent of Gondwana when the continents of South America and Australia were joined via Antarctica (up to about 167 million years ago).[13] [48]

Because of the early divergence from the therian mammals and the low numbers of extant monotreme species, it is a frequent subject of research in evolutionary biology. In 2004, researchers at the Australian National University discovered the Platypus has ten sex chromosomes, compared with two (XY) in most other mammals (for instance, a male Platypus is always XYXYXYXYXY).[49] Although given the XY designation of mammals, the sex chromosomes of the Platypus are more similar to the ZZ/ZW sex chromosomes found in birds. The platypus genome also has both reptilian and mammalian genes associated with egg fertilisation.[50] Lacking the mammalian sex-determining gene SRY, the process of sex determination in the Platypus remains unknown.[51] A draft version of the platypus genome sequence was published in Nature on 8 May 2008, revealing both reptilian and mammalian elements, as well as two genes found previously only in birds, amphibians and fish. More than 80% of the Platypus' genes are common to the other mammals whose genomes have been sequenced and the study has proved that the platypus was the first species to transition from its reptilian-like ancestor to mammal.[50]

Conservation status

Except for its loss from the state of South Australia, the Platypus occupies the same general distribution as it did prior to European settlement of Australia. However, local changes and fragmentation of distribution due to human modification of its habitat are documented. Its current and historical abundance, however, is less well-known and it has probably declined in numbers, although still being considered as common over most of its current range.[32] The species was extensively hunted for its fur until the early years of the 20th century and, although protected throughout Australia in 1905,[43] up until about 1950 it was still at risk of drowning in the nets of inland fisheries.[28] The Platypus does not appear to be in immediate danger of extinction thanks to conservation measures, but it could be impacted by habitat disruption caused by dams, irrigation, pollution, netting and trapping. The IUCN lists the Platypus on its Red List as Least Concern.

Platypuses generally suffer from few diseases in the wild; however, there is widespread public concern in Tasmania about the potential impacts of a disease caused by the fungus Mucor amphibiorum. The disease (termed Mucormycosis) only affects Tasmanian platypuses, and has not been observed in platypuses in mainland Australia. Affected platypuses can develop ugly skin lesions or ulcers on various parts of the body, including their backs, tails and legs. Mucormycosis can kill platypuses, death arising from secondary infection and by affecting the animals' ability to maintain body temperature and forage efficiency. The Biodiversity Conservation Branch at the Department of Primary Industries and Water are collaborating with NRM north and University of Tasmania researchers to determine the impacts of the disease on Tasmanian Platypus, as well as the mechanism of transmission and current spread of the disease.[52] Until recently, the introduced Red Fox (Vulpes vulpes) was confined to mainland Australia, but growing evidence now indicates that it is present in low numbers in Tasmania.[53]

Much of the world was introduced to the Platypus in 1939 when National Geographic Magazine published an article on the Platypus and the efforts to study and raise it in captivity. This is a difficult task, and only a few young have been successfully raised since—notably at Healesville Sanctuary in Victoria. The leading figure in these efforts was David Fleay, who established a platypussary—a simulated stream in a tank—at the Healesville Sanctuary and had a successful breeding in 1943. In 1972, he found a dead baby of about 50 days old, which had presumably been born in captivity, at his wildlife park at Burleigh Heads on the Gold Coast, Queensland.[54] Healesville repeated its success in 1998 and again in 2000 with a similar stream tank. Taronga Zoo in Sydney bred twins in 2003, and had another birth in 2006.[55]

Cultural references

The Platypus is sometimes jokingly referred to as proof that God has a sense of humour (at the beginning of the film Dogma, for example). Its unusual appearance has led to its featuring in many media, particularly in its native Australia.

The Platypus has been used several times as a mascot: "Syd" the Platypus was one of the three mascots chosen for the Sydney 2000 Olympics along with an echidna and a kookaburra,[56] "Expo Oz" the Platypus was the mascot for Expo '88, which was held in Brisbane in 1988,[57] and Hexley the Platypus is the mascot for Apple Computer's BSD-based Darwin operating system, Mac OS X.[58]

The Platypus has also been featured in songs, such as Green Day's Platypus (I Hate You) and Mr. Bungle's Platypus. It is the subject of a children's poem by Banjo Paterson,[59] and it also frequently appears as a character in children's television programmes, for example, the Platypus Family on Mister Rogers' Neighborhood, Perry the Platypus on the show Phineas and Ferb, and Ovide, the star of the cartoon Ovide and the Gang.[60]

See also

References

Books
Documentary

External links

Notes and References

  1. Web site: Symbols & Emblems of NSW. Government of New South Wales. 2008. 29 December 2008.
  2. BioScience. The Paradoxical Platypus. Brian K. Hall. 49. 3. 211–218. American Institute of Biological Sciences. 1999-03. 10.2307/1313511.
  3. Web site: Duck-billed Platypus. Museum of hoaxes. 2008-04-02.
  4. Book: Liddell & Scott. 1980. Greek-English Lexicon, Abridged Edition. Oxford University Press, Oxford, UK. 0-19-910207-4.
  5. Web site: Fauna of Australia chap.16 vol.1b. J.R.Grant. Australian Biological Resources Study (ABRS). 2006-09-13.
  6. Web site: Platypus Paradoxes. National Library of Australia. 2001–08. 2006-09-14.
  7. Web site: The Platypus. Department of Anatomy & Physiology, University of Tasmania. 1997-07-03. 2006-09-14.
  8. Book: Guiler, E.R.. 1983. Tasmanian Devil. R. Strahan Ed.. The Australian Museum Complete Book of Australian Mammals. 27–28. Angus & Robertson. 0-207-14454-0.
  9. Web site: Current research on the platypus, Ornithorhynchus anatinus in Tasmania: Abstracts from the 1999 'Tasmanian Platypus WORKSHOP'. Sarah Munks and Stewart Nicol. University of Tasmania. 1999–05. 2006-10-23.
  10. Web site: Thermal Biology of the Platypus. Davidson College. 1999. 2006-09-14.
  11. Australian Journal of Zoology. Monotreme Cell-Cycles and the Evolution of Homeothermy. J.M. Watson and J.A.M. Graves. 36. 5. 573–584. 1988. CSIRO. 10.1071/ZO9880573 .
  12. Australian Journal of Zoology. Standard Metabolism of Monotremes and the Evolution of Homeothermy. T.J. Dawson, T.R. Grant and D. Fanning. 27. 4. 511–515. 1979. CSIRO. 10.1071/ZO9790511 .
  13. Acta Palaeontologica Polonica. New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars. PDF, - Scholar search. Pascual, R., Goin, F.J., Balarino, L., and Udrizar Sauthier, D.E.. 47. 3. 487–492. 2002.
  14. Web site: Living mammals are placentals (eutheria), marsupials, and monotremes. Geowords. Hugh Race. 2006-09-19.
  15. http://www.australianfauna.com/platypus.php Australian Fauna
  16. http://www.usyd.edu.au/news/84.html?newsstoryid=2267 The University of Sydney
  17. http://rainforest-australia.com/platypus_poison.htm Rainforest Australia
  18. Gerritsen. Vivienne Baillie. Platypus poison. Protein Spotlight. 29. 2002-12. 14 September. 2006.
  19. http://www.cosmosmagazine.com/news/1423/evolution-platypus-venom-revealed Evolution of platypus venom revealed
  20. Journal of Neurophysiology. Venom From the Platypus, Ornithorhynchus anatinus, Induces a Calcium-Dependent Current in Cultured Dorsal Root Ganglion Cells. G. M. de Plater, P. J. Milburn and R. L. Martin. 85. 3. 1340–1345. 2001-3. American Physiological Society.
  21. Web site: The venom of the platypus (Ornithorhynchus anatinus). 2006-09-13.
  22. Pettigrew. John D.. Electroreception in Monotremes. The Journal of Experimental Biology. 1447–1454. 202. 1999. 19 September. 2006. PDF.
  23. Pettigrew. John D.. P R Manger, and S L Fine. The sensory world of the platypus. Philosophical Transactions of the Royal Society of London. 1199–1210. 353. 1998. 8 August. 2007.
  24. Book: Dawkins, Richard. Richard Dawkins

    . Richard Dawkins. The Ancestor's Tale, A Pilgrimage to the Dawn of Life. The Duckbill's Tale. Houghton Mifflin Company. Boston. 2004. 0-618-00583-8.

  25. Book: Manning, A & Dawkins, M.S.. An Introduction to Animal Behaviour Fifth Edition. Cambridge University Press. 1998.
  26. Web site: Platypus. Department of Primary Industries and Water, Tasmania. 2006-08-31. 2006-10-12.
  27. Web site: Research on Kangaroo Island. University of Adelaide. 2006-07-04. 2006-10-23.
  28. Web site: Impacts of water management in the Murray-Darling Basin on the platypus (Ornithorhynchus anatinus) and the water rat (Hydromus chrysogaster). Anthony Scott and Tom Grant. CSIRO Australia. 1997-11. 2006-10-23. PDF.
  29. Web site: Platypus in Country Areas. Australian Platypus Conservancy. 2006-10-23.
  30. Web site: Platypus. Environmental Protection Agency/Queensland Parks and Wildlife Service. 2006. 2006-10-24.
  31. Web site: Monotreme Reproductive Biology and Behavior. Iowa State University. Erica Cromer. 2004-04-14. 2006-10-23.
  32. Philosophical Transactions: Biological Sciences. Field Biology of the Platypus (Ornithorhynchus Anatinus): Historical and Current Perspectives. The Royal Society. 353. 1372. T.G. Grant and P. D. Temple-Smith. 1998-07-29. 1081–1091. 10.1098/rstb.1998.0267 .
  33. Australian Journal of Zoology. Spatial-Organization and Movement Patterns of Adult Male Platypus, Ornithorhynchus-Anatinus (Monotremata, Ornithorhynchidae). CSIRO. 43. 1. J.L. Gardner and M. Serena. 1995. 91–103. 10.1071/ZO9950091 .
  34. Web site: Platypus. Parks and Wildlife Service Tasmania. 2003-12. 2006-10-23. PDF.
  35. The Journal of Experimental Biology. 200. 20. 2647–2652. Energetics of Swimming by the Platypus Ornithorhynchus Anatinus: Metabolic Effort Associated with Rowing. The Company of Biologists Limited. F.E. Fish, R.V. Baudinette, P.B. Frappell, and M.P. Sarre. 1997-07-28. PDF.
  36. Web site: Energetics and foraging behaviour of the platypus. University of Tasmania. Philip Bethge. 2002-04. 2006-10-23. PDF.
  37. The Journal of Applied Ecology. The Diving Behaviour of the Platypus (Ornithorhynchus anatinus) in Waters with Different Trophic Status. H. Kruuk. 30. 4. 1993. 592–598. 10.2307/2404239 .
  38. Australian Journal of Zoology. Aspects of Lactation in the Platypus, Ornithorhynchus anatinus (Monotremata), in Waters of Eastern New South Wales. T.R. Grant, M. Griffiths and R.M.C. Leckie. 31. 6. 881–889. 1983. 10.1071/ZO9830881. 1983.
  39. Web site: Family Ornithorhynchidae (platypus). Anna Bess Sorin and Phil Myers. University of Michigan Museum of Zoology. 2001. 2006-10-24.
  40. Philosophical Transactions of the Royal Society B: Biological Sciences. Early development and embryology of the platypus. R. L. Hughes and L. S. Hall. 353. 1372. 1101–1114. The Royal Society. 1998-07-29. 10.1098/rstb.1998.0269 .
  41. Web site: Ockhams Razor. The Puzzling Platypus. 2006-12-02.
  42. Philosophical Transactions: Biological Sciences. The Development of the External Features of the Platypus (Ornithorhynchus Anatinus). Paul R. Manger, Leslie S. Hall, John D. Pettigrew. 353. 1372. 1115–1125. 1998-07-29. The Royal Society. 10.1098/rstb.1998.0270.
  43. Web site: Egg-laying mammals. Queensland Museum. 2000-11. 2006-10-24. PDF.
  44. [Ross Piper|Piper, Ross]
  45. Philosophical Transactions: Biological Sciences. The Platypus is not a Rodent: DNA Hybridization, Amniote Phylogeny and the Palimpsest Theory. John A. W. Kirsch and Gregory C. Mayer. 353. 1372. 1221–1237. 1998-07-29. 10.1098/rstb.1998.0278.
  46. Web site: The first Jurassic mammal from South America. O. W. M. Rauhut, T. Martin, E. Ortiz-Jaureguizar and P. Puerta. Nature. 2006-10-24. 2001-12-11. DOC.
  47. Journal of Mammalian Evolution. Springer Netherlands. Evolution of the Monotremes: Phylogenetic Relationship to Marsupials and Eutherians, and Estimation of Divergence Dates Based on α-Lactalbumin Amino Acid Sequences. M. Messer, A.S. Weiss, D.C. Shaw and M. Westerman. 5. 1. 95–105. 1998-03. 10.1023/A:1020523120739 .
  48. Web site: A platypus in Patagonia—Ancient life. Tim Folger. Discover. 1993-01. 2006-10-17.
  49. Web site: Sex, Ys, and Platypuses. Discover. Jocelyn Selim. 2005-04-25. 2008-05-07.
  50. Nature. 453. 7192. 175–183. Genome analysis of the platypus reveals unique signatures of evolution. 2008-05-08. 10.1038/nature06936. Warren, Wesley C..
  51. Web site: Explore the Platypus genome. Ensembl. 2006-11. 2007-01-19.
  52. Web site: Platypus Fungal Disease. Department of Primary Industries and Water, Tasmania. 2008-08-29. 2008-02-29.
  53. http://www.dpiw.tas.gov.au/inter.nsf/ThemeNodes/LBUN-5K438G?open.
  54. Web site: David Fleay's achievements. Queensland Government. 2003-11-23. 2006-09-13.
  55. Web site: Platypus. Catalyst. 2003-11-13. 2006-09-13.
  56. Web site: A Brief History of the Olympic and Paralympic Mascots. Bejing2008. 2004-08-05. 2006-10-25.
  57. Web site: About World Expo '88. Foundation Expo '88. 1988. 2007-12-17.
  58. Web site: The Home of Hexley the Platypus. 2006-10-25.
  59. Web site: Old Man Platypus. 2008-09-04. Banjo Paterson. The Animals Noah Forgot. Endeavour Press. 1933.
  60. Web site: Ovide and the Gang. IMDB. 2006-10-25.