ARPANET explained

The Advanced Research Projects Agency Network (ARPANET), was the world's first operational packet switching network and the core network of a set that came to compose the global Internet. The network was funded by the Defense Advanced Research Projects Agency (DARPA) of the United States Department of Defense for use by its projects at universities and research laboratories in the US. The packet switching of the ARPANET was based on designs by Lawrence Roberts of the Lincoln Laboratory.[1]

Packet switching, today the dominant basis for data communications worldwide, was a new concept at the time of the conception of the ARPANET. Prior to the advent of packet switching, both voice and data communications had been based on the idea of circuit switching, as in the traditional telephone circuit, wherein each telephone call is allocated a dedicated, end to end, electronic connection between the two communicating stations. Such stations might be telephones or computers. The (temporarily) dedicated line is typically composed of many intermediary lines which are assembled into a chain that stretches all the way from the originating station to the destination station.

With packet switching, a data system could use a single communications link to communicate with more than one machine by collecting data into datagrams and transmitting these as packets onto the attached network link, as soon as the link becomes idle. Thus, not only can the link be shared, much as a single post box can be used to post letters to different destinations, but each packet can be routed independently of other packets.

History

The earliest ideas for a computer network intended to allow general communications among computer users were formulated by computer scientist J. C. R. Licklider, of Bolt, Beranek and Newman (BBN), in August 1962, in memoranda discussing his concept for an “Intergalactic Computer Network”. Those ideas contained almost everything that composes the contemporary Internet.

In October 1963, Licklider was appointed head of the Behavioral Sciences and Command and Control programs at the Defense Department's Advanced Research Projects Agency — ARPA (the initial ARPANET acronym). He then convinced Ivan Sutherland and Bob Taylor that this computer network concept was very important and merited development, although Licklider left ARPA before any contracts were let that worked on this concept.

Ivan Sutherland and Bob Taylor continued their interest in creating such a computer communications network, in part, to allow ARPA-sponsored researchers at various corporate and academic locales to put to use the computers ARPA was providing them, and, in part, to make new software and other computer science results quickly and widely available. In his office, Taylor had three computer terminals, each connected to separate computers, which ARPA was funding: the first, for the System Development Corporation (SDC) Q-32, in Santa Monica; the second, for Project Genie, at the University of California, Berkeley; and the third, for Multics, at MIT. Taylor recalls the circumstance: "For each of these three terminals, I had three different sets of user commands. So, if I was talking online with someone at S.D.C., and I wanted to talk to someone I knew at Berkeley, or M.I.T., about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them. I said, “Oh Man!”, it’s obvious what to do: If you have these three terminals, there ought to be one terminal that goes anywhere you want to go. That idea is the ARPANET".[2] Somewhat contemporaneously, several other people had (mostly independently) worked out the aspects of “packet switching”, with the first public demonstration presented by the National Physical Laboratory (NPL), on August 5, 1968, in the United Kingdom.[3]

Creation

By mid-1968, Taylor had prepared a complete plan for a computer network, and, after ARPA’s approval, a Request for Quotation (RFQ) was sent to 140 potential bidders. Most computer science companies regarded the ARPA–Taylor proposal as outlandish, and only twelve submitted bids to build the network; of the twelve, ARPA regarded only four as top-rank contractors. At year’s end, ARPA considered only two contractors, and awarded the contract to build the network to BBN Technologies on April 7, 1969.The initial, seven-man BBN team were much aided by the technical specificity of their response to the ARPA RFQ — and thus quickly produced the first working computers. This team was led by Frank Heart. The BBN-proposed network closely followed Taylor’s ARPA plan: a network composed of small computers called Interface Message Processors (IMPs), that functioned as gateways (today called routers) interconnecting local resources. At each site, the IMPs performed store-and-forward packet switching functions, and were interconnected with modems that were connected to leased lines, initially running at . The host computers were connected to the IMPs via custom serial communication interfaces. The system, including the hardware and the packet switching software, was designed and installed in nine months.

The first-generation IMPs were initially built by BBN Technologies using a rugged computer version of the Honeywell DDP-516 computer configured with of expandable core memory, and a 16-channel Direct Multiplex Control (DMC) direct memory access unit.[4] The DMC established custom interfaces with each of the host computers and modems. In addition to the front-panel lamps, the DDP-516 computer also features a special set of 24 indicator-lamps showing the status of the IMP communication channels. Each IMP could support up to four local hosts, and could communicate with up to six remote IMPs via leased lines.

Misconceptions of design goals

Common ARPANET lore posits that the computer network was designed to survive a nuclear attack. In A Brief History of the Internet, the Internet Society describes the coalescing of the technical ideas that produced the ARPANET:

It was from the RAND study that the false rumor started, claiming that the ARPANET was somehow related to building a network resistant to nuclear war. This was never true of the ARPANET, only the unrelated RAND study on secure voice considered nuclear war. However, the later work on Internetting did emphasize robustness and survivability, including the capability to withstand losses of large portions of the underlying networks.[5]

Although the ARPANET was designed to survive subordinate-network losses, the principal reason was that the switching nodes and network links were unreliable, even without any nuclear attacks. About the resource scarcity that spurred the creation of the ARPANET, Charles Herzfeld, ARPA Director (1965–1967), said:

The ARPANET was not started to create a Command and Control System that would survive a nuclear attack, as many now claim. To build such a system was, clearly, a major military need, but it was not ARPA’s mission to do this; in fact, we would have been severely criticized had we tried. Rather, the ARPANET came out of our frustration that there were only a limited number of large, powerful research computers in the country, and that many research investigators, who should have access to them, were geographically separated from them.[6]

Packet switching pioneer Paul Baran affirms this, explaining: "Bob Taylor had a couple of computer terminals speaking to different machines, and his idea was to have some way of having a terminal speak to any of them and have a network. That's really the origin of the ARPANET. The method used to connect things together was an open issue for a time."[7]

ARPANET deployed

The initial ARPANET consisted of four IMPs:

The first message on the ARPANET was sent by UCLA student programmer Charley Kline, at 10:30 p.m. on October 29, 1969, from Boelter Hall 3420.[8] Supervised by Prof. Leonard Kleinrock, Kline transmitted from the university's SDS Sigma 7 Host computer to the Stanford Research Institute's SDS 940 Host computer. The message text was the word login; the l and the o letters were transmitted, but the system then crashed. Hence, the literal first message over the ARPANET was lo. About an hour later, having recovered from the crash, the SDS Sigma 7 computer effected a full login. The first permanent ARPANET link was established on November 21, 1969, between the IMP at UCLA and the IMP at the Stanford Research Institute. By December 5, 1969, the entire four-node network was established.[9]

Growth and evolution

In March 1970, the ARPANET reached the East Coast of the United States, when an IMP at BBN in Cambridge, Massachusetts was connected to the network. Thereafter, the ARPANET grew: 9 IMPs by June 1970 and 13 IMPs by December 1970, then 18 by September 1971 (when the network included 23 university and government hosts); 29 IMPs by August 1972, and 40 by September 1973. By June 1974, there were 46 IMPs, and in July 1975, the network numbered 57 IMPs. By 1981, the number was 213 host computers, with another host connecting approximately every twenty days.

In 1973 a transatlantic satellite link connected the Norwegian Seismic Array (NORSAR) to the ARPANET, making Norway the first country outside the US to be connected to the network. At about the same time a terrestrial circuit added a London IMP.[10]

In 1975, the ARPANET was declared "operational". The Defense Communications Agency took control since ARPA was intended to fund advanced research.In 1983, the ARPANET was split with U.S. military sites on their own Military Network (MILNET) for unclassified defense department communications. The combination was called the Defense Data Network (DDN).[11] Separating the civil and military networks reduced the 113-node ARPANET by 68 nodes. Gateways relayed electronic mail between the two networks. MILNET later became the NIPRNet.

Technology

Support for inter-IMP circuits of up to 230.4 kbit/s was added in 1970, although considerations of cost and IMP processing power meant this capability was not actively used.

1971 saw the start of the use of the non-ruggedized (and therefore significantly lighter) Honeywell 316 as an IMP.It could also be configured as a Terminal Interface Processor (TIP), which provided terminal server support for up to 63 ASCII serial terminals through a multi-line controller in place of one of the hosts.[12] The 316 featured a greater degree of integration than the 516, which made it less expensive and easier to maintain. The 316 was configured with 40 kB of core memory for a TIP. The size of core memory was later increased, to 32 kB for the IMPs, and 56 kB for TIPs, in 1973.

In 1975, BBN introduced IMP software running on the Pluribus multi-processor. These appeared in a small number of sites. In 1981, BBN introduced IMP software running on its own C/30 processor product.

In 1983, TCP/IP protocols replaced NCP as the ARPANET’s principal protocol, and the ARPANET then became one subnet of the early Internet.

Shutdown and legacy

The original IMPs and TIPs were phased out as the ARPANET was shut down after the introduction of the NSFNet, but some IMPs remained in service as late as 1989.

The ARPANET Completion Report, jointly published by BBN and ARPA, concludes that:

... it is somewhat fitting to end on the note that the ARPANET program has had a strong and direct feedback into the support and strength of computer science, from which the network, itself, sprang.

In the wake of ARPANET being formally decommissioned on February 28, 1990, Vinton Cerf wrote the following lamentation, entitled "Requiem of the ARPANET"[13] :

It was the first, and being first, was best,
but now we lay it down to ever rest.
Now pause with me a moment, shed some tears.
For auld lang syne, for love, for years and years
of faithful service, duty done, I weep.
Lay down thy packet, now, O friend, and sleep.

-Vinton Cerf

Senator Albert Gore, Jr. began to craft the High Performance Computing and Communication Act of 1991 (commonly referred to as "The Gore Bill") after hearing the 1988 report toward a National Research Network submitted to Congress by a group chaired by Leonard Kleinrock, professor of computer science at UCLA. The bill was passed on December 9, 1991 and led to the National Information Infrastructure (NII) which Al Gore called the "information superhighway". ARPANET was the subject of two IEEE Milestones, both dedicated in 2009.[14] [15]

Software and protocols

The starting point for host-to-host communication on the ARPANET was the 1822 protocol BBN Report 1822, which defined the transmission of messages to an IMP. The message format was designed to work unambiguously with a broad range of computer architectures. An 1822 message essentially consisted of a message type, a numeric host address, and a data field. To send a data message to another host, the transmitting host formatted a data message containing the destination host's address and the data message being sent, and then transmitted the message through the 1822 hardware interface. The IMP then delivered the message to its destination address, either by delivering it to a locally connected host, or by delivering it to another IMP. When the message was ultimately delivered to the destination host, the receiving IMP would transmit a Ready for Next Message (RFNM) acknowledgement to the sending, host IMP.

Unlike modern Internet datagrams, the ARPANET was designed to reliably transmit 1822 messages, and to inform the host computer when it loses a message; the contemporary IP is unreliable, whereas the TCP is reliable. Nonetheless, the 1822 protocol proved inadequate for handling multiple connections among different applications residing in a host computer. This problem was addressed with the Network Control Program (NCP), which provided a standard method to establish reliable, flow-controlled, bidirectional communications links among different processes in different host computers. The NCP interface allowed application software to connect across the ARPANET by implementing higher-level communication protocols, an early example of the protocol layering concept incorporated to the OSI model. In 1983, TCP/IP protocols replaced NCP as the ARPANET’s principal protocol, and the ARPANET then became one component of the early Internet.

Network applications

NCP provided a standard set of network services that could be shared by several applications running on a single host computer. This led to the evolution of application protocols that operated, more or less, independently of the underlying network service. When the ARPANET migrated to the Internet protocols in 1983, the major application protocols migrated with it.

The ARPANET in film and other media

Contemporary

Post-ARPANET

See also

Notes

Further reading

Detailed technical reference works

External links

Notes and References

  1. Web site: Living Internet: Lawrence Roberts Manages The ARPANET Program. livinginternet.com. 6 November 2008.
  2. News: An Internet Pioneer Ponders the Next Revolution. John Markoff. The New York Times. 20 September 2008. 20 December 1999. http://web.archive.org/web/20080922095019/http://partners.nytimes.com/library/tech/99/12/biztech/articles/122099outlook-bobb.html. 22 September 2008 . no.
  3. Web site: The accelerator of the modern age. BBC News. 19 May 2009. 5 August 2008. http://web.archive.org/web/20090610082212/http://news.bbc.co.uk/1/hi/technology/7541123.stm. 10 June 2009 . no.
  4. http://www.old-computers.com/museum/computer.asp?c=551 "Honeywell DDP-516"
  5. Web site: A Brief History of the Internet. Internet Society. 20 September 2008. http://web.archive.org/web/20080918213304/http://www.isoc.org/internet/history/brief.shtml. 18 September 2008 . no.
  6. Web site: Charles Herzfeld on ARPANET and Computers. About.com. December 21, 2008.
  7. Brand, Stewart. "Founding Father". Wired. March 2001
  8. Web site: Browsing history: A heritage site is being set up in Boelter Hall 3420, the room the first Internet message originated in. JESSICA SAVIO. UCLA Daily Bruin.
  9. Web site: Internet Began 35 Years Ago at UCLA with First Message Ever Sent Between Two Computers. Chris Sutton. UCLA. http://web.archive.org/web/20080308120314/http://www.engineer.ucla.edu/stories/2004/Internet35.htm. 2008-03-08.
  10. Web site: NORSAR and the Internet. NORSAR.
  11. Book: ARPANET, the Defense Data Network, and Internet. The Froehlich/Kent Encyclopedia of Telecommunications. Fritz E. Froehlich. Allen Kent. CRC Press. 1990. 341–375. 1. 978-0-8247-2900-4.
  12. Arpanet's first access control. IEEE Annals of the History of Computing. 1058-6180. Peter T. Kirstein.
  13. Abbate, J. (1999). Inventing the internet. Cambridge, MA: MIT Press.
  14. Web site: Milestones:Birthplace of the Internet, 1969. IEEE Global History Network. IEEE. 4 August 2011.
  15. Web site: Milestones:Inception of the ARPANET, 1969. IEEE Global History Network. IEEE. 4 August 2011.
  16. Web site: The First Network Email. Tomlinson, Ray. 6 March 2012.